

Table of Contents

Why are checkpoints necessary in event streaming applications? 2

How checkpointing in Apache Flink works - Distributed Snapshots	 3

Configuring checkpoints in Apache Flink	 5

	 Choosing State Backend	 5

		 HashMapStateBackend 5

		 EmbeddedRocksDBStateBackend	 5

	 Switching State backend over a savepoint (since Flink 1.13)	 6

	 Choosing Checkpoint Storage	 6

	 	 JobManagerCheckpointStorage	 6

		 FileSystemCheckpointStorage	 7

	 Setting checkpoint intervals	 7

Conclusion	 10

Additional Resources	 10

Copyright © Ververica 2022 1

Why are checkpoints necessary in event
streaming applications?

Every stream processing application, whether this is a streaming data
pipeline, or a streaming SQL application can be stateful, meaning that
it involves some sort of state. It’s rather straightforward to explain how
operations such as event aggregation or the calculation of an average
include state in the form of a counter for incoming events or other ag-
gregates.

But even if we take a simpler example, of a Map transformation,
changing a single object to a different one, we will still experience that
source operators need to store some state to keep track of the off-
sets that they have consumed so far and determine the position in
the input data (for example in a Apache Kafka partition) up until all
records have been consumed, and decide what’s the next record to be
processed.

State is particularly important in the case of failures. Especially for
stream processing applications, re-processing events in the case of
failure is time consuming (reprocessing and replaying the event se-
quence could take hours or even days) so rebuilding the state we have
accumulated so far might be a hard task to do. To persist state in an
easy-to-manage way and recover from a failure, Apache Flink imple-
ments a mechanism that allows reprocessing only the events from a
specific point in time (previous stored state) instead of replaying the
entire history of the application.

There are usually two options for doing that:

•	 External State:
Using an External State would mean that Apache Flink would be uti-
lizing an external persisted system and every access and update would
need to be stored to the external persisted storage (i.e., a database or
distributed file system)

•	 Internal State:
Using an Internal State mechanism means that Apache Flink persists
state locally while only parodically takes snapshots of the accumulat-

Copyright © Ververica 2022 2

-ed state of the application to an external storage or persisted file
system to recreate and reproduce the state when necessary.

Each one of the approaches comes with its own advantages and
drawbacks. For example, using External State means that scaling/
rescaling of the state is independent from the processing logic but at
the same time tends to be significantly slower because each access
and update to the state needs to go over the network which impacts
how quick the response might be.

Additionally, securing exactly-once guarantees with an external stor-
age system tends to be troublesome because the technology would
need to coordinate different environments with different processing
semantics and guarantees. On the other hand, choosing an Internal
State means that every state access or update is significantly faster
since it’s local and does not have to travel through the network. Ad-
ditionally, using Internal State allows the creation of a highly consis-
tent, distributed state snapshot of a stream processing application,
which is the case for Apache Flink (see below for details).

Figure 1: Internal State in Apache Flink

How checkpointing in Apache Flink works -
Distributed Snapshots

Apache Flink recovers from failures without the need to reprocess ev-
ery event from the beginning using a Distributed Snapshots mecha-
nism. Distributed Snapshots in Apache Flink work in a similar fashion
to the Chandy–Lamport algorithm.

Copyright © Ververica 2022 3

A Flink application consists of a pipeline of task managers executing
the operator’s code, and a job manager that acts as a single entity
coordinating the checkpointing process among other responsibilities.
Job manager comes with a checkpoint coordinator that periodically
triggers checkpoints by sending trigger requests to all source tasks
in the pipeline. Sources, upon request, take a snapshot copy of their
state and store it in a distributed storage or file system before they
emit checkpoint barriers downstream.

Step 1: Checkpoint barriers trigger
taking a snapshot of the operator
state in a distributed storage.

Step 2: Checkpoint barriers contin-
ue to move downstream through
the operator graph in a Flink appli-
cation.

Figure 2: Checkpoint barriers moving through task operators in a Flink application

These barriers are injected into the data stream and flow with the re-
cords as part of the event stream. Barriers never (actually they might;
see unaligned checkpoints) overtake records, they flow strictly in line.
A barrier separates the records in the data stream into the set of re-
cords that goes into the current snapshot, and the records that go
into the next snapshot.

Taking a closer look into distributed snapshots in a Flink application
from the perspective of a single operator, we see that for an operator
to create a snapshot of its state, all barriers from all channels should
be received so that there is a consistent view from the same point
in the application which in turn ensures that all checkpoint barriers
across all the channels have arrived in the operator. This process is
illustrated in Figure 3 below.

Copyright © Ververica 2022 4

Step 1: Waiting for barriers from all
channels to arrive.

Step 2: Snapshotting operators
state once we’ve seen barriers on all
channels.

Figure 3: Checkpoint alignment process in a Flink application

Configuring checkpoints in Apache Flink

Now that we have a common understanding of how checkpointing
works in Apache Flink, in this section we are discussing some import-
ant configuration parameters when setting up checkpointing for your
Flink application.

Choosing State Backend

One of the primary considerations when you configure checkpoints
in a Flink application is related to the chosen state backend. State
backends include local data that can be accessed by each operator in
Flink, and they are the ones defining where this ‘working’ state of the
application is kept and how it can be accessed by operators. Apache
Flink offers two different state backends, the HashMap State Back-
end and an EmbeddedRocksDBStateBackend, each of them com-
ing with their own advantages and specific characteristics. We take a
closer look at both state backends below.

•	 HashMapStateBackend
The HashMapStateBackend keeps all the ‘working’ state in memory
which naturally results in a faster operation compared to the RocksDB

Copyright © Ververica 2022 5

state backend because each access happens in memory and there is
no need for data serialization/deserialization. At the same time, this
state backend is limited by the amount of available memory in our
application.

•	 EmbeddedRocksDBStateBackend
The RocksDBStateBackend uses a co-located key-value store to
keep the ‘working’ state of your Apache Flink application while it spills
data into disks. Consequently, RocksDB needs to serialize and dese-
rialize data for your application resulting in a 10X slower operation
compared to the HashMap state backend described above. However,
RocksDB memory size is practically ‘unlimited’ since we are no longer
restricted by the available memory but only by the disk size which can
be updated as needed.

To configure your selected state backend for your Flink application,
you can either do this in Flink’s configuration parameters like the fol-
lowing:

The backend that will be used to store operator state

checkpoints application

Alternatively, you can programmatically configure the state backend
on a per job basis/level with the following command:

StreamExecutionEnvironment env =

 StreamExecutionEnvironment.getExecutionEnvironment();

env.setStateBackend(new HashMapStateBackend());

// or

env.setStateBackend(new EmbeddedRocksDBStateBackend());

Copyright © Ververica 2022 6

Switching State backend over a savepoint (since Flink 1.13)

Starting from Apache Flink 1.13 and later versions, developers and
data engineers can switch between the two state backends using a
savepoint and can restore their application switching from one state
backend to another, a feature that gives greater flexibility to engi-
neering teams.

For developers starting a new Flink application, we would recommend
starting with the HashMap State Backend, keeping your state in memo-
ry, and only switching to the RocksDB State Backend when you see you
are running out of available memory, or you want to move your applica-
tion to a production environment.

Choosing Checkpoint Storage

A second configuration parameter that data engineers and software
developers need to consider when configuring a Flink application
is choosing the appropriate checkpoint storage, meaning defining
where Apache Flink will store the distributed snapshots. Apache Flink
provides two options for storing checkpoints: the JobManagerCheck-
pointStorage and the FileSystemCheckpointStorage which we de-
scribe below.

•	 JobManagerCheckpointStorage
As a default, Apache Flink uses the JobManagerCheckpointStorage
which will use the memory of Flink JobManagers to store the check-
points. Although this ensures that the checkpoints are persisted in the
cases of TaskManager failures, when a JobManager fails the stored
checkpoints will also disappear.

•	 FileSystemCheckpointStorage

Because of the above, and especially for production use cases, it is rec-
ommended that data engineers use the FileSystemCheckpointStorage
that stores snapshot files in a highly durable, distributed persisted file
system that will keep the snapshot data in either a TaskManager failure
or a JobManager failure.

Copyright © Ververica 2022 7

You can configure your desired checkpoint storage option by follow-
ing the configuration parameters below:

flink-conf.yaml

configures file system checkpoint storage
state.backend.changelog.storage: filesystem

Directory for storing checkpoints
state.checkpoints.dir: hdfs://namenode:40010/flink/check-

Alternatively, you can programmatically configure the checkpoint
storage on a per job mode with the following command:

StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();

env.getCheckpointConfig()
 .setCheckpointStorage(“hdfs://namenode:40010/flink/check-

Setting checkpoint intervals

When configuring your Apache Flink application, you will also need to
set up and configure checkpoint intervals. Checkpoint intervals will es-
sentially tell Apache Flink how frequently you would like checkpoints
to be triggered in your application. There is no correct answer or value
for how often checkpoints should be triggered as this will very much
depend on your specific use case. We recommend asking the follow-
ing questions to internal teams that will guide you towards choosing
an appropriate checkpoint interval value for your Flink application:

•	 What is the SLA of your application?
This will determine how long your team will be comfortable waiting
for the Flink application to replay and reprocesses data from the last
stored checkpoint in the case of a TaskManager failure, for example.

•	 How much load can your TaskManagers sustain?
Even though the checkpointing process happens asynchronously and
in the background while your Flink application is regularly processing

Copyright © Ververica 2022 8

any incoming events, there is some additional overhead on your job’s
TaskManagers both because of I/O and CPU utilization since Flink will
need to retrieve a copy of your state from the distributed file system.

•	 How often should your Flink application publish results?
By determining how often your Apache Flink application should be
publishing results, you will get a better understanding of your check-
pointing requirements. For example, in the case of exactly once pro-
cessing, transactions can only be committed once the corresponding
checkpoint is completed. This is because in the case of failure, revert-
ing to a previous checkpoint will mean that records might be replayed
twice and consequently violating exactly once guarantees.

Checkpoint intervals can be configured either in Flink’s config.yaml
file:

flink-conf.yaml

how often checkpoints are triggered (value greater than 0 enables
checkpointing)
execution.checkpointing.interval: 1 s

additional important settings that affect checkpointing frequency

how many checkpoints can be pending in the entire graph
execution.checkpointing.max-concurrent-checkpoints: 1

minimal time that has to pass since the last completed checkpoint
before triggering a new one
execution.checkpointing.min-pause: 700 ms

Or alternatively you can programmatically set up your checkpoint in-
terval on a per-job mode by following the below command:

final StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();

// how often checkpoints are triggered (value greater than 0 enables checkpointing)
env.enableCheckpointing(1_000);

// how many checkpoints can be pending in the entire graph
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);

// minimal time that has to pass since the last completed checkpoint before triggering a new one
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(700);

Copyright © Ververica 2022 9

Conclusion

Apache Flink’s checkpointing mechanism is one of the key features of
Flink as a stream processor, ensuring timely and easy recovery from
failures while at the same time enabling Flink to process events with
exactly-once guarantees. In the previous sections, we gave an intro-
duction into what checkpoints are in Apache Flink, how they work and
how they can be configured for different scenarios (for example, de-
pending on whether your application is in the POC phase or whether
it’s running in a production environment. For a more thorough presen-
tation and explanation of Flink’s checkpointing mechanism as well as
some recent (more advanced) additions and changes to checkpoint-
ing in Apache Flink, we suggest going over the following resources.

Copyright © Ververica 2022 10

Additional Resources

•	 Apache Flink Documentation:
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/s	
tate/checkpoints/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/	c o n -
cepts/stateful-stream-processing/

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/ concepts/stateful-stream-processing
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/ concepts/stateful-stream-processing

About Ververica

Ververica’s mission is to power the core business of every company
with cutting-edge real-time stream processing technology. In order
to do that, the team at Ververica focuses on building the best tech-
nology available for stream processing, while at the same time creat-
ing a global and open community around this technology.

We build and develop Ververica Platform, a stream processing plat-
form that enables every enterprise to power their real-time business
and use a production-grade streaming infrastructure while at the
same time we actively contribute and participate in the open source
Apache Flink® community, the underlying technology framework of
Ververica Platform itself.

Copyright © Ververica 2022 11

For more information:

@ sales@ververica.com

 @VervericaData

 www.ververica.com

http://mailto:sales@ververica.com
https://twitter.com/VervericaData
https://www.ververica.com/

