
VERVERICA PLATFORM:

Stream processing
for real-time businesses
powered by Apache Flink®

VERVERICA PLATFORM
Stream processing for real-time business,
powered by Apache Flink®

 2 Ververica · 2019 www.ververica.com

VERVERCIA PLATFORM

Ververica was founded by the original creators of Apache Flink, a pow-
erful open source framework for stateful stream processing.

In addition to supporting the Flink community, Ververica provides
Ververica Platform, a complete stream processing infrastructure, that
includes open source Apache Flink.

Ververica Platform makes it easier than ever for businesses to deploy
and manage stream processing applications.

About Ververica About this Whitepaper

This document is organized into 3 sections, your best starting point
will depend on your level of familiarity with stateful stream processing
and Apache Flink.

In the first section, we’ll define stateful stream processing and ex-
plain why it’s a natural fit for real-time, event-driven products and
services.

In the second section, we’ll introduce Apache Flink, a powerful open
source stream processing framework, share real-world use cases and
review the features that set Flink apart as a stream processor.

In the third section, we’ll walk through Ververica Platform, an enter-
prise-ready stream processing platform, provided by Ververica, in-
cluding open source Apache Flink

Ververica Platform is the first solution purpose-built for stateful
stream processing, unifying disparate components to provide seam-
less deployment and operations from start to finish.

 3 Ververica · 2019 www.ververica.com

TABLE OF CONTENTS

The Emergence of Real-Time, Event-Driven Business

	 • 	What is Stream Processing.. 4

	 • 	Stream Processing Unifies Data Processing......................... 6

	 • 	Stream Processing For Batch & Real-Time Data..................7

Stateful Sream Processing with Apache Flink

	 • 	Apache Flink: A High-Performance Open-Source Stream
	 Processor With Powerful APIs and Libraries......................... 8

	 • 	Real-World Applications Powered by Apache Flink............. 8

		 – Alibaba: Real-time Search Ranking on Singles’ Day......... 8		

	 – Netflix: Real-Time Streaming for Recommendations....... 8

		 – Uber: Streaming Analytics for Business................................ 9

		 – ING: Next-Generation Customer Communication............ 9

	 • 	Why Apache Flink? A Review of Flink´s Key Features....... 10

		 – Performance.. 10

		 – State Management... 10

		 – Fault Tolerance and Exactly-Once Semantics................... 10		

	 – Runs Everywhere.. 10

		 – Powerful, User-friendly APIs..11

		 – Easy Integrations with the Data Ecosystem........................11

		 – Easy to Operate..11

		 – Sophisticated Time Handling..11

Ververica Platform: Production-Ready Stream
Processing with Open Source Apache Flink

	 • 	Ververica Platform is a Complete, Production-Grade
	 Stream Processing Infrastructure..12

	 • 	Ververica Application Manager: Enabling Stateful
		 Streaming Aware Deployment and Operations..................13

• 	Ververica Platform: A Look Inside..14

 		 – Unified Deployment on Kubernetes......................................15

		 – Ververica Application Manager:

	 Stateful-Streaming-Aware Orchestration............................15

		 Record-Keeping.. 17

		 Interfaces...18

	 Metrics and Logging Integration..19

Conclusion & Next Steps... 20

Resources..21

	

 4 Ververica · 2019 www.ververica.com

THE EMERGENCE OF REAL-TIME, EVENT-DRIVEN BUSINESS

What is Stream Processing?

In a range of industries, customer interaction has evolved from transac-
tional and product centric to relationship based and services centric:

	 A consumer bank serving as a place to hold money and to occasional-
ly provide a financial product such as a mortgage or student loan
builds a push-based customer messaging platform to proactively no-
tify users of overdraft risk, relevant savings products, account security
concerns, and more. [1]

	 Auto insurance companies offering customers an insurance policy
with a fixed monthly rate, develop usage based insurance products
where rates are determined by real-time analysis of time spent driving
and driving behavior. [2]

	 Car manufacturers launching a new vehicle every 6 years explore
car-sharing services, where ownership is no longer the core model. [3]

This transformation from a transactional, product centric model to a
relationship based, services centric model, requires both a new way of
thinking and new technological capabilities.

From a technology standpoint, businesses must be able to both ingest
and process large quantities of data and respond to insights from data in
real time. A delay of minutes or even seconds from data generation to
response means missed opportunities to serve customers.

Stateful stream processing has emerged as a technological standard to
enable this transformation. Stream processing is the processing of data in
motion, in other words, computing on data as it is produced or received.

Many types of data are continuous streams: sensor events, user activity on
a website or mobile app and financial trades are examples of data that are
created as a continuous series of events over time.

Before stream processing emerged as a standard for processing continuous
datasets, these streams of data were often stored in a database, a file sys-
tem, or other form of mass storage. Applications would then query the sto-
red data or compute over the data as needed. The downside of this appro-
ach, broadly referred to as batch ‘processing‘, is the delay between the
creation of data and its use for analysis or action.

Application

Sensor

Other

Queries
& Udates

Lookups

Analytics

Database

Distributed File System, SAN, ...

 5 Ververica · 2019 www.ververica.com

„Stream processing turns the paradigm around: The application logic, analytics and
queries exist continuously and data flows through them continuously“.

Upon receiving an event from a data stream, a stream processing application
reacts to the event immediately. The application might trigger an action,
update an aggregate, or ‘remember‘ the event for future use.

Stream processing computations can also handle multiple data streams
jointly, and each computation over the event data stream may produce
other event data streams.

To summarize: stream processing drastically reduces the time from data
creation to action in comparison to traditional, batch-oriented architectu-
res. With stream processing, companies can immediately derive and res-
pond to insights in data, taking action when the data is the most valuable.

The stream processing paradigm elegantly addresses many challenges that
developers of real-time analytics and event-driven applications face today:

	 Applications and analytics react to events instantly:
	 There’s a minimal lag time between an event occuring -> insight derived

-> action taken. Actions and analytics are up to date, reflecting the data
when it is still fresh, meaningful, and most valuable.

	 Stream processing naturally and easily models the continuous and
timely nature of most data:

	 This is in contrast to scheduled (batch) queries and analytics on static
data. Incrementally computing updates as new data are availab-
le, rather than periodic recomputation of all data, is a perfect fit for
the stream processing model.

	 Stream processing decentralizes and decouples the infrastructure:
	 The streaming paradigm reduces the need for large and expensive sha-

red databases. Instead, each stream processing application maintains
its own data and application state, which are managed by the stream
processing framework. In this way, a stream processing application fits
naturally in a micro-services architecture.

Application

Sensor

Other

Application

Application

Application

Birth of the data
as streams of events

Applications computing
over event data streams

 6 Ververica · 2019 www.ververica.com

Conceptually, stateful stream processing combines the database or key-
value store tables and the application logic, whether an analytics applicati-
on or an event-driven application, into one tightly-integrated entity.

This integration of the state and execution of the application or analytics
logic, results in very high performance, scalability, data consistency and ope-
rational simplicity.

Apache Flink, which we’ll cover shortly, provides first-class support for state-
ful stream processing, including the ability to handle very large state size,
elastic re-scaling of stateful streaming programs, state snapshots (for versi
oning and application updates), upgrade and schema evolution features.

You probably noticed that we mentioned both real-time analytics and
event-driven applications in the previous sections. Are those not two diffe-
rent domains, with processing and analytics implemented via frameworks
such as Hadoop or via SQL warehouses and applications implemented via
application frameworks and databases?

Not necessarily. Modern approaches to data processing, analytics and
event-driven applications have much in common.

Stream Processing Unifies Data Processing,
Analytics, and Applications

Application

State

Stateful stream processing is a category of stream processing in which a
computation maintains contextual state, meaning that past events can
influence the way future events are processed. Virtually all non-trivial stre-
am processing applications require stateful stream processing:

	 A fraud prevention application would keep the most recent transactions
for each credit card along with parameters from fraud detection models
in the state. Every new transaction is scored against this data in the sta-
te, then labeled as valid or fraudulent; lastly, the state is updated with
the new transaction.

	 An online recommendation application would store parameters that de-
scribe a user’s preferences based on previous activity. Every action the
user takes, generates an event that updates these parameters.

	 A microservice that handles a playlist or shopping cart, receives events
after each user interaction.

 7 Ververica · 2019 www.ververica.com

To produce analytical results in real time or near real time, a system must
continuously compute and update results with each new record or event.

Modern applications and microservices also operate in an event-driven or
‘reactive‘ fashion, meaning their logic and computation is triggered by
events (where events are generated, for example, when a user interacts with
a website or mobile app).

This simplifies data infrastructure because many types of systems can be
built on a common architecture. In addition, a developer can build applica-
tions that use analytical results to respond to insights in the data and take
action immediately.

For example:

	 Classifying a credit card transaction as fraudulent, based on an analytical
model, then automatically blocking this transaction.

	 Sending push notifications to users, based on their actions that are
scored against existing models about their behavior.

	 Automatically adjusting the parameters of a machine based on real-time
analysis of its sensor data.

Application

Sensor

Other

Stream
Processing App

Database

Queries

Stream

File/Object
Starage

Database

Application

Database

Application

Database

ApplicationApplication

Application

Application

Batch
Job

Batch
SQL

Batch
Job

Data Lake

Batch Data Processing Applications

Event Producer Stream / Log / 
Message Queue

Streaming
Application

Result Publishing
and Serving

Stream Processing for Batch & Real-Time Data
Processing and Event Driven Applications

 8 Ververica · 2019 www.ververica.com

STATEFUL STREAM PROCESSING WITH APACHE FLINK®

A High-Performance Open-Source Stream Pro-
cessor with Powerful APIs and Libraries

Apache Flink is an open-source stream processing framework built for
high-throughput, low-latency, stateful stream processing. In this section,
we’ll go into more detail on Flink use cases and the key features that enable
these use cases.

Based on our experience, working with companies that run some of the lar-
gest stream processing deployments in the world, we’ve learned that a pro-
duction-grade stream processing framework must offer superior perfor-
mance and API expressiveness, in addition to operability. The Apache Flink
community has long been focused on making Flink the most complete
open-source stream processing framework available.

Real-World Applications Powered by
Apache Flink

ALIBABA
Real-time Search Results Ranking on Singles’ Day
Industry: Retail / E-Commerce
Sample Use Case: Real-Time Recommendations

Alibaba’s data infrastructure runs on Apache Flink, with many Flink use ca-
ses in production within the company. One example: Singles’ Day is China’s
largest online shopping holiday, comparable to Black Friday and Cyber
Monday in the United States but on an even larger scale. [4] User shopping
behavior changes considerably on Singles’ Day, and existing search result
ranking models are therefore no longer relevant. Alibaba uses Flink to train
and deploy a Singles’ Day-specific search ranking model in real-time, which
led to a 30 % increase in search-to-purchase conversion rate. [5]

NETFLIX
A Move to Real-Time Streaming for Recommendations and More
Industry: Technology
Sample Use Case: Real-Time Recommendations

Netflix chose Apache Flink as the stream processing technology in its tran-
sition from batch ETL to real-time, event-based processing. [6] Flink is a core
component in Keystone, Netflix’s internal stream processing platform, which
provides an interface where users can easily submit ad hoc stream proces-

 9 Ververica · 2019 www.ververica.com

sing jobs. [7] Flink powers a range of use cases, including a real-time recom-
mendation engine on the Netflix homepage. For example, Flink made it
possible to train machine learning algorithms with real-time data while
saving storage costs and easily integrating with other real-time systems.

UBER
Company-wide Streaming Analytics for Business and Technical Users
Industry: Automotive / Transportation
Sample Use Case: Real-Time Business Intelligence
Uber’s business runs on real-time streams of data, from rider requests, to
driver location information, to ever-changing traffic conditions and more.

Uber built an Apache Flink based streaming analytics platform called
AthenaX, which includes a SQL interface powered by Flink’s streaming
SQL API, so that business analysts and product managers can submit
their own ad-hoc queries without needing help from software engineers.
[8][9] In fact, Uber has found that 7 0% of their production streaming appli-
cations can be expressed in SQL. The platform helps Uber to provide more
accurate arrival estimates to riders, to maintain a real-time count of orders
per restaurant for UberEATS, and more.

ING
Next Generation Customer Communication
Industry: Consumer Finance
Sample Use Case: Fraud Detection

ING is a global bank serving 36 million customers in over 40 countries and
uses Apache Flink to power streaming analytics solutions that change how

it communicates with and serves its customers. ING has built a Flink-powe-
red platform that provides high-throughput and low-latency and is well-sui-
ted for complex and demanding use cases in an international banking or-
ganization.

These use cases include customer notifications and real-time fraud de-
tection, all of which require fast data processing and a sophisticated busi-
ness rules engine or machine learning scoring system. [10]

„At ING, we believe that staying ahead of the game means
changing how we interact with our customers, no longer
using a traditional model of waiting for the customers to
come to the bank through our website or apps, but actively re-
aching out with information that is relevant to customers,
in order to make their financial life frictionless. Many of these
changes are driven by reacting to events that are critical to the
customer and using streaming analytics to be able to reach out in
milliseconds after the event occurs. Apache Flink is key for ING to
achieve this.” [11]

Ferd Scheepers | Chief Information Architect | ING

 10 Ververica · 2019 www.ververica.com

Now, we’ll cover a selection of Flink’s differentiating features to explain why
companies have chosen Apache Flink to build real-time, event-driven appli-
cations.

Performance
Apache Flink’s stream processing runtime is designed at all levels to deliver
high throughput and low latency. For example, the network and serializati-
on stack has been carefully optimized for performance and shuffles occur
inside of Flink without a requirement to interact with an external system
between operators.

Flink is highly configurable (while providing sensible defaults for out-of-the-
box performance) empowering developers with the dials to find the right
balance between latency and throughput. Future releases will further im-
prove the default behavior of Flink in this regard, nearly eliminating the tra-
de-off altogether.

State Management
Flink provides first-class support for stateful stream processing, meaning
that Flink is purpose-built for applications where past events can influence
the way future events are processed.

As mentioned in the previous section, state is an enabling concept for a
majority of interesting use cases, including windowed computations, pat-
tern matching across a stream of events, machine learning model serving,
and more. Apache Flink provides powerful abstractions for stateful stream
processing.

With pluggable state backends, Flink allows for keeping small state in me-
mory for fast access and also provides a state backend for very large state
that exceeds the available memory by using local disks. In addition, the sta-
te managed by Flink is part of the integrated fault tolerance mechanism to
prevent data loss. This means Flink is capable of efficiently keeping teraby-
tes of streaming applications state in a fault-tolerant way.

Both custom user applications as well as Flink’s internal operators and libra-
ries rely on Flink’s state management.

Fault Tolerance and Exactly-Once Semantics
Flink is fault tolerant to machine or software failures and provides exact-
ly-once guarantees for managed state. Flink relies on asynchronous, dis-
tributed snapshots called ‘checkpoints‘ to provide fault tolerance, ensuring
that a computation won’t be affected by a machine or software failure.

In other words, an end result won’t be missing any data, nor will it count data
more than once, even when something goes wrong. Flink can also provide
end-to-end exactly-once semantics with external systems such as Apache
Kafka that provide a mechanism for transactions.

Runs Everywhere
Flink is widely deployed in the cloud (for example, AWS and Google Cloud
Platform) as well as on-premises and integrates with many resources ma-
nagers, including but not limited, to Kubernetes, Mesos, DC/OS, and YARN.
It’s also possible to run Flink in a custom setting using a ‘standalone cluster‘
mode.

Why Apache Flink?
A Review of Flink‘s Key Features

 11 Ververica · 2019 www.ververica.com

Powerful, User Friendly APIs
Flink’s developer-friendly APIs and libraries support a wide range of use ca-
ses and user types. It’s truly a one-stop-shop for data-driven applications.
In addition to its core DataStream API for stream processing, Flink includes:

	 The Table & streaming SQL API for submitting SQL queries on live streams
of data, making it possible for business analysts or other non-developers
to build real-time applications.

	 The FlinkCEP library for complex event processing on live streams of data,
which includes full support for Flink’s state management features.

	 The DataSet API for transformations of static datasets (batch proces-
sing).

	 The ProcessFunction, a low-level stream processing operation that gives
access to the basic building blocks of all (acyclic) streaming applications:
events, state, and timers.

Easy Integration with the Data Ecosystem
It’s easy to use Flink with many complimentary technologies. Flink offers
pre-built connectors to common data sources (systems that send data into
Flink) and data sinks (systems that Flink sends data to after processing)
such as Apache Kafka, Amazon Kinesis, RabbitMQ, Apache Nifi, Amazon S3
and other file systems, Elasticsearch, Cassandra, and more. In addition, Flink
provides a simple but powerful interface for writing custom connectors to
external systems.

Easy to Operate
Flink provides very powerful tools for operations:

	 A web-based user interface that provides information about the system’s
status.

	 A metrics system that provides built-in reporters for a wide range of com-
monly-used metris tools such as InfluxDB, Datadog, Graphite; in addition,
Flink has built-in system metrics, and users can access these metrics for
their own applications.

	 A feature called ‘savepoints‘ provides tooling for managing the state of a
streaming job; a savepoint is a copy of the state of a Flink job to a speci-
fied location, and savepoints can be used to migrate application state
between jobs.

Sophisticated Time Handling
Flink makes it possible to process results based on event time, the time that
an event actually occurred in the real-world,―even if events arrive at Flink
from an upstream system out of event-time order. With awareness for event
time in the system, operators such as the windowing operator, the CEP
(complex event processing) library, or custom operators can handle events
based on real-world event time.

This means, Flink can provide consistent results even in the case of out-of-
order or very late arrival of data to the system. This is a big deal in stream
processing; many users take advantage of Flink’s streaming APIs for use ca-
ses traditionally reserved for batch processing, because Flink’s event-time
handling capabilities offer the same degree of completeness and consisten-
cy.

 12 Ververica · 2019 www.ververica.com

VERVERICA PLATFORM: PRODUCTION-READY STREAM PROCESSING
WITH OPEN SOURCE APACHE FLINK®

Including Apache Flink, the leading stateful stream processor and Ververica
Application Manager, a state-aware stream processing orchestration com-
ponent, Ververica Platform provides a production-ready stream processing
infrastructure.

Companies running the largest stream processing deployments in the world
have adopted Apache Flink because of its powerful model for stateful stre-
am processing, enabling them to derive insights and take action on data,
the very moment it’s generated and when it’s most valuable.

Ververica Platform is a purpose-built stateful stream processing architec-
ture. With Ververica Platform, operating powerful data systems is easier
than ever before. Ververica Platform and Ververica Application Manager
offer an entirely new experience for deploying and managing stream pro-
cessing applications.

It’s our mission at Ververica to ensure that developers invest their time in
improving their stream processing applications, not on maintenance and
infrastructure.

Ververica Platform provides a stable, easy-to-use stream processing plat-
form so that developer teams can focus exclusively on their use cases.

In this section, we’ll first describe the ‘why‘ behind Ververica Platform, and
then we’ll walk through the ‘what‘ and the ‘how‘.

Let’s walk through a few of the steps required to deploy and manage a sta-
teful stream processing application in production, beyond the development
of the core application logic.

	 Resource management
	 A developer must decide how to integrate Flink with the hardware at their

disposal. A majority of Flink users deploy Flink jobs on shared resources,
rather than on a dedicated cluster, which means integrating with a re-
source management platform such as Kubernetes, YARN or running dedi-
cated VMs in a cloud environment, such as AWS.

	 Centralized logging and metrics:
	 This might require integration with a logging and metrics infrastructure

that’s already in use at a company or setting up logging and metrics from
scratch if no such systems exist. A tight integration with these systems is
crucial for debugging performance and correctness issues. It’ll be neces-
sary to set up servers for these components, also.

	 CI / CD pipeline
	 The streaming application needs to integrate with an organization’s exis-

ting deployment infrastructure in order to maximize productivity.

	 Stateful application management
	 Over time, developers must update and improve business logic, fix bugs,

and upgrade to new framework versions, all while ensuring that the appli-
cation state is preserved throughout the process.

Ververica Platform is a Complete, Producti-
on-grade Stream Processing Infrastructure

 13 Ververica · 2019 www.ververica.com

Even when using an open source framework like Flink, which provides a wide
range of operability features, rolling out a stream processing infrastructure
and managing continuous applications in production is a time intensive pro-
cess.

This is the challenge that Ververica Platform addresses.

We designed Ververica Platform based on our collaboration with production
users of Apache Flink, such as Netflix, Uber, Alibaba, ING and more. Ververi-
ca worked closely with these companies as they built large-scale stream
processing platforms, and gained insights during this process into best
practices for migrating existing data workloads onto real-time stream pro-
cessing platforms as well as managing long-running streaming applica-
tions.

Ververica Platform makes it possible for anyone to start with a best-in-
class stream processing infrastructure and tightly-integrated compo-
nents.

The demand from organizations for a production-ready stream processing
infrastructure was the motivation for the key component in Ververica Plat-
form, the Ververica Application Manager.

Before Ververica Platform, a stateful stream processing infrastructure was
made up of disparate tooling for deployment as well as for state manage-
ment. Upgrading, scaling, or migrating applications required careful plan-
ning and tedious manual work (and often custom-built tooling) for both
state management and resource management.

Application Manager unifies these two worlds by providing one tightly-in-
tegrated tool that manages application state and deployment together.

Ververica Application Manager is the component that makes stateful appli-
cation lifecycle management easy and frictionless. It also provides a docu-
mented history of application versions, which, in addition to being a helpful
troubleshooting tool, is a legal requirement in certain industries.

„Ververica Application Manager is the core orchestration compo-
nent in Ververica Platform. It’s what allows developers to easily
manage, monitor, and configure streaming jobs without worrying
about the underlying infrastructure. Ververica Application Mana-
ger is stateful-streaming-aware, thus simplifying common stream
processing operations tasks such as upgrading applications in a
consistent manner“.

Next, we’ll go into detail about how Ververica Platform is packaged and de-
scribe its capabilities.

Application Manager: Enabling Stateful Strea-
ming Aware Deployments & Operations

 14 Ververica · 2019 www.ververica.com

Ververica Platform: A Look Inside

Ververica Platform is packaged as a set of Docker containers provided by
Ververica. After installation using tools that are provided as part of the dis-
tribution, customers will have Ververica Application Manager as well as me-
trics and logging collection systems running in their Kubernetes cluster.

Ververica Platform ships with components for metrics and logging, but the-
se components are mostly included for demonstration purposes or for use
during pre-production testing. In production, it’s a best practice to integrate
with your organization’s existing metrics and logging infrastructure. Ververi-
ca Platform provides configuration options for integration with existing sys-
tems.

As the central orchestration and coordination component, Ververica Appli-
cation Manager will allocate Flink containers on Kubernetes in order to exe-
cute stateful streaming jobs.

Ververica Application Manager allocates a dedicated Flink cluster within
Kubernetes for each Flink application, a best practice for stability and re-
source isolation.

Flink applications launched by Ververica Application Manager will be con-
figured to be integrated with persistent storage, metrics, and logging plus
other systems like Zookeeper or Kafka, depending on the requirements.

Ressource
Allocation

Job
Control

Application
Manager

Metrics Logging

Resource Management

Persistent Storage

 15 Ververica · 2019 www.ververica.com

Ververica Application Manager:
Stateful-Streaming-Aware Orchestration

The Ververica Application Manager is the main orchestrator between a
user’s requests, Kubernetes, and Apache Flink.

It provides an abstraction over streaming jobs, which in Ververica Applicati-
on Manager are called ‘Deployments‘. A Deployment specifies:

	 A Flink streaming job’s code location (as a jar file)
	 The target infrastructure
	 Flink configuration details 	
	 Resource requirements

...and many other parameters.

Based on these specifications, an internal controller component of the Ver-
verica Application Manager schedules an Apache Flink cluster on Kuber-
netes. Once that Flink cluster is available, an application is submitted and
continuously monitored.

As soon as the specification of the deployment changes, the controller will
detect that change and trigger the required operations, to achieve the new
desired state.

Unified Deployment on Kubernetes

Kubernetes is the common resource manager of Ververica Platform com-
ponents. As mentioned above, all components are containerized using Do-
cker, and Ververica Platform’s setup tooling enables easy deployment of the
platform.

Kubernetes allows for deploying complex, highly integrated, and distributed
infrastructure components on a wide range of hardware: all major cloud
providers support Kubernetes. Red Hat OpenShift and others provide solu-
tions for on-premises deployments.

Without a resource manager like Kubernetes, building out a stream proces-
sing infrastructure, would entail manual setup and configuration of your
Logstash, Kibana and Elasticsearch servers; your Grafana server; your In-
fluxDB server; and all other necessary components. In this way, Ververica
Platform significantly shortens the infrastructure roll-out process.

Ververica Application Manager allows users to either deploy the Apache Flink
Docker containers included with Ververica Platform, or to use custom cont-
ainers built on top of the provided ones, meaning that users can include custom
dependencies into their Flink images, or run Flink on their own base containers.

 16 Ververica · 2019 www.ververica.com

This powerful model facilitates actions such as scaling up a Flink job to
more machines by simply changing a setting in the deployment specifi-
cation. Without the Ververica Application Manager, a user would need to
manually perform a series of operations with Flink’s APIs, manually handle
error cases, and manually store metadata about the operations, to comple-
te this task.

All changes to a deployment controlled by the Ververica Application Mana-
ger, such as updates to the configuration, updates to the job itself, or chan-
ges to resource allocations, are automatically reflected in the Flink cluster,
orchestrated by the Ververica Application Manager.

DEPLOYMENT
CONFIGURATION v1
parallelism: 3
filterDelta: 0,15

DEPLOYMENT
CONFIGURATION v2
parallelism: 5
filterDelta: 0,15

DEPLOYMENT
CONFIGURATION v3
parallelism: 5
filterDelta: 0,23

TIMELINE

In case of failures, the Ververica Application Manager will work to keep
your stream processing applications going. For example, when performing
a stateful upgrade of a Flink application, if creating a copy of the state fails
in Flink, the Ververica Application Manager will keep the old Flink applicati-
on running until it’s able to create a full copy of the Flink state.

Because the Ververica Application Manager is aware of the stateful nature
of Flink applications, it also takes care of keeping the state throughout
changes to the deployment.

Configuration updates or parallelism changes will be carried out in a state-
ful way behind the scenes, meaning that in-flight data is not lost.

For example, a streaming application analyzing user session windows will
not lose in-flight data as a result of scaling the application up to more ma-
chines.

 17 Ververica · 2019 www.ververica.com

Testing Cluster

Fraud Detection v1

Fraud Detection v2

Fraud Detection v3

Production Cluster

use
production
state

Ververica Application Manager: Record-keeping

In addition to the declarative control model, the Ververica Application Ma-
nager keeps track of the Flink applications triggered, along with their confi-
guration changes, savepoints, and all controller events in an event log.

With a history of configuration changes, the Ververica Application Mana-
ger keeps a ‘paper trail‘ of how the configuration has evolved. This allows
different roles such as engineers and infrastructure operators to trace per-
formance regressions or misbehavior back to specific configuration changes.

A managed history of savepoints allow a user to ‘travel in time‘ by resetting
a job back to a savepoint, thus setting the state to the time of the savepoint.

The Ververica Application Manager also supports forking a deployment with
a savepoint. This allows for advanced scenarios such as deploying an up-
dated Flink job on a pre-production environment, while using the state from
a current production job.

Ververica Application Manager’s event log reports to the user on asyn-
chronous operations such as deployment upgrades and the creation of sa-
vepoints.

Failures during such operations, but also in steady state, will be reported
in the status of the resource and an event log. Therefore, operators of Flink
applications can periodically check the event log or resource status, to see
what happened recently within an application.

 18 Ververica · 2019 www.ververica.com

The homepage lists all deployments and allows a developer to create new ones.
The status of each deployment is shown in a ‘Status‘ field.

The Overview page for each deployment contains controls for changing the application
status, triggering savepoints, or forking deployments. There are also links that provide
easy access to the Flink user interface, metrics and logging systems and tabs for the
event log, application history, and savepoint overview.

Ververica Application Manager: Interfaces

The Ververica Application Manager provides both a web-based user inter-
face and a REST API. The user interface allows developers to easily monitor,

control, and configure stream processing applications, without worrying
about the underlying infrastructure.

 19 Ververica · 2019 www.ververica.com

In addition to the web-based user interface, the Ververica Application Ma-
nager provides a REST API. All features available in the web user interface
are also available through this API.

We provide an API specification based on Swagger so that users can easily
build their own integrations on top of the API.

One common use case of the REST API is the integration with automated
deployment systems, for example, as part of a CI / CD pipeline.

This REST API is independent of Flink versions and is properly versioned and
documented. Integrating internal deployment systems with the Ververica
Application Manager is recommended for the following reasons:

	 The declarative model of the Ververicas Application Manager does not
require integrators to worry about error handling, timeouts, or synchroni-
zation between systems.

	 The Ververica Application Manager API is independent of Flink releases,
meaning that integrations remain stable through Flink releases and don’t
need to be revisited with each Flink release.

Ververica Application Manager: Metrics and Logging integration

All Flink clusters created by the Ververica Application Manager are auto-
matically configured to use a centralized metrics and logging system, the
Ververica Application Manager forwards a unique deployment and job iden-
tifier to these systems. This allows a user to set the scope of metrics and logs
to specific time frames of a deployment.

The performance implications of certain configuration parameters are very
easy to correlate via the Ververica Application Manager, because both the
configuration changes and metrics are tracked and stored by a common
system.

For example, there is a configuration parameter in Flink for managing the
tradeoff between throughput and latency. With the Ververica Application
Manager, its easy for a user to test different parameters in Flink and measu-
re the impact on throughput and latency, arriving at the configuration that
fits best, given individual application requirements.

Ververica Platform does not require customers to use the integrated logging
and metrics components. For production use, we provide configuration op-
tions and integrations with existing deployment and logging solutions.

 20 Ververica · 2019 www.ververica.com

CONCLUSION AND NEXT STEPS

We hope you finished this report with an understanding of 3 key points:

	 The transition from transactional and product-centric business models to
relationship-based and services-centric business models is powered by
new technologies such as Apache Flink, an open source framework for
stateful stream processing.

	 Stream processing with Apache Flink has enabled global enterprises in a
range of industries to realize measurable business value by acting on their
data in real time.

	 Ververica Platform, built and supported by the original creators of Apa-
che Flink at Ververica, provides an out-of-the-box stream processing inf-
rastructure. Ververica Platform makes it easier than ever for businesses to
deploy and manage stream processing applications in production.

	 Of course, this was just an introduction to stream processing with Apache
Flink and Ververica Platform. If you’d like to learn more, plesae reach out
or refer to our resources on the next page.

Ready for the next steps?

Download a free Ververica Platform trial sandbox at:
ververica.com/download

If you’d like to learn more about Ververica Platform, we recommend
the Ververica Platform documentation: docs.ververica.com

If you’d like to get in touch with someone from our team, send an email to:
platform@ververica.com or fill out our contact form: ververica.com/contact

We’d love to hear from you!

 21 Ververica · 2019 www.ververica.com

RESOURCES

[1] https://berlin.flink-forward.org/kb_sessions/taking-away-customer-friction-through-streaming-analytics/

[2] https://www.iamagazine.com/markets/read/2017/04/17/what-s-next-for-usage-based-insurance

[3] https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/an-integrated-perspective-on-the-future-of-mobility

[4] https://www.forbes.com/sites/augustrick/2017/12/03/singles-day-has-eclipsed-cyber-monday-and-black-friday-but-they-all-share-the-same-goal/

[5] http://www.dataversity.net/year-blink-alibaba/

[6] https://www.infoq.com/articles/netflix-migrating-stream-processing

[7] https://sf-2017.flink-forward.org/kb_sessions/keynote-stream-processing-with-flink-at-netflix/

[8] https://eng.uber.com/athenax/

[9] https://sf-2017.flink-forward.org/kb_sessions/athenax-ubers-streaming-processing-platform-on-flink/

[10] https://berlin-2017.flink-forward.org/kb_sessions/fast-data-at-ing-building-a-streaming-data-platform-with-flink-and-kafka/

[11] https://berlin-2017.flink-forward.org/kb_sessions/taking-away-customer-friction-through-streaming-analytics/

 22 Ververica · 2019 www.ververica.com

CONTACT US

 contact@ververica.com

 @VervericaData

 www.ververica.com

DOWNLOAD FREE TRIAL

Ververica was founded by the original creators
of Apache Flink® with the mission of enabling
business in real-time.

Companies such as Alibaba, ING, Netflix and
Uber use Flink as the stream processing engine
to power large-scale stateful applications,
including real-time analytics, search, content
ranking and fraud detection.

ABOUT VERVERICA

